Third Semester B.E. Degree Examination, Aug./Sept. 2020 Data Structures with C

Time: 3 hrs .
Max. Marks:100
Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What is a pointer? Write the output of the following program.
void main ()
\{
int $\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}$, *ptr1, $^{*} \mathrm{ptr} 2$;
$\mathrm{a}=30, \mathrm{~b}=6$;
$\mathrm{ptr} 1=\& \mathrm{a} ; \mathrm{ptr} 2=\& \mathrm{~b}$;
$\mathrm{x}=$ *ptr1 $+* \operatorname{ptr} 2-6$;
$y=6-* \operatorname{trl} / * \operatorname{ptr} 2+30$;
printf ("ln a = \%d, b= \%d", a, b);
printf(" ${ }^{\ln } \mathrm{x}=\% \mathrm{~d}, \mathrm{y}=\% \mathrm{~d} ", \mathrm{x}, \mathrm{y}$);
ptr1 $={ }^{}$ ptr1 +70 ;
*ptr2 $=$ *ptr2 * 2 ;
printf ("\n a = \%d, b = \%d", a, b) ;
*ptr1= *ptr1 + * ptr2;
printf ("\n $a=\% d, b=\% d ", a, b)$;
\}
(06 Marks)
b. The factorial faction n ! has value 1 when $n \leq 1$ and value $n *(n-1)$! When $n>1$. Write both a recursive and an iterative C function to compute n !. Determine the space complexity of both the functions.
(06 Marks)
c. Define Recursion. Write a recursive function that print out the sequence of moves and the number of moves needed to solve the "Tower of Hanoi" problem.
(08 Marks)
2 a. Define structures. Write a C program to illustrate the definition of a structure, declaration of a structure variable and referencing of a member of the declared structure variables with comments.
(10 Marks)
b. Define sparse matrix. What are the advantages of sparse matrix representation? Write a function in C to transpose a given matrix represented as triples in a single dimensional array.
(10 Marks)
3 a. Define stack data structure and write the functions in C for performing PUSH, POP and DISPLAY operations on stack.
(08 Marks)
b. Write the postfix and prefix expression for $(a+b) * d+e /(f+a * d)+c$
c. Write C functions to implement operations for inserting and deleting elements from the circular queue.
(06 Marks)
4 a. What is a linked list? Write a C program to simulate Queues using single linked lists.
(10 Marks)
b. Illustrate how polynomials are represented using linked lists with an example. Write a C function to add two polynomials.
(10 Marks)

10CS35

PART - B

5 a. Write a C function that counts the number of leaf nodes in binary tree.
(04 Marks)
b. Write the in-order, pre-order and post-order traversals for the binary tree shown in Fig Q5(b).

Fig Q5(b)
(06 Marks)
c. Suppose that we have the following key values:
$7,16,49,82,5,31,6,2,44$
i) Write out the max heap after each value is inserted into the heap
ii) Write out the min heap after each value is inserted into the heap.
(10 Marks)
6 a. What is a binary search tree? Write a C function to insert elements into the binary search tree.
b. Construct the binary search tree for the following input :
$100,75,150,125,200,175,25,50,35,72,137$.
c. For the digraph of Fig Q6(c). obtain
i) the in-degree and out-degree of each vertex
ii) its adjacency matrix
iii) its adjacency - list representation.

Fig Q6(c)
(08 Marks)
7 a. What are the various types of priority queues? Explain each with its operations.
(08 Marks)
b. Explain Height-based leftist tree and weight-based leftist tree with examples.
c. Define Binomial heap and Fibonacci heap, illustrate with examples.

8 a. Construct an AVL tree by inserting the elements in the order $50,100,150,125,190,35$ and 20 starting from an empty tree. Demonstrate the rotations done during constructing the AVL tree wherever applicable.
b. What is a splay tree? What are the advantages of splay trees?

